

Quartz Impulse Force Hammer

Туре 9724А...

for Medium Force Range

Dynamic quartz sensor elements contained within instrumented hammers are used to deliver a measurable force impulse (amplitude and frequency content) to excite a mechanical structure under test. A response signal measured with an accelerometer in conjunction with a FFT analyzer provides the transfer function of the structure.

- Low impedance, voltage mode
- · Quartz sensing element guarantees long-term stability
- Accessories for various applications
- · Sensor cable integrated to hammer handle
- Conforming to CE

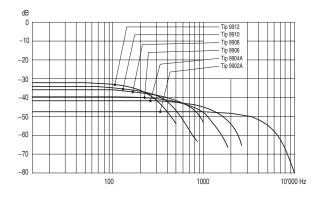
Description

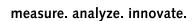
The dynamic response of a mechanical structure while either in a development phase or an actual use environment can readily be determined by impulse force testing. Using a FFT analyzer, the transfer function of the structure can be determined from a force pulse generated by the impact of a hammer and the response signal measured with an accelerometer. The impulse force test method, yields extensive information about the frequency and attenuation behavior of the system under test.

The stainless steel head of an impulse force hammer, is equipped with a quartz, low impedance force sensor which accepts impact tips varying in hardness. A selection of steel, plastic, PVC and rubber tips along with an extender mass allow the hammer to be tailored to impart to the test structure, a desired spectrum of frequencies. Shear quartz accelerometers operating in a voltage mode and featuring insensitivity to base strain, thermal transients and transverse motion are available to measure the response of the test specimens ranging from thin-walled structures to steel bridge members.

The hammer incorporates a quartz measuring cell with built in Piezotron[®] low impedance electronics. The cell's voltage mode operation, guarantees a stable signal transmission insensitive to ambient influences. A wide selection of single or multi-channel couplers are available to provide power and signal processing for the hammer and accelerometers.

Application


The hammer may be used for testing structures such as small rotating machinery and aerospace structural components at medium to high frequencies. The impulse force hammer is used to analyze the dynamic behavior of mechanical structures. The vibrations induced by the hammer impact are measured by an accelerometer.


Kistler Instrument Corporation reserves the right to discontinue or change specifications, designs or materials without notice consistent with sound engineering principles and quality practices.

© 2009, Kistler Instrument Corporation, 75 John Glenn Dr., Amherst, NY 14228 Tel 716-691-5100, Fax 716-691-5226, sales.us@kistler.com, www.kistler.com

9724A_000-273*e*-08.09

イ

Technical Data

Specification	Unit	Type 9724A2000 Type 9724A5000	
Force range	N	0 2 000	0 5 000
Maximum force	N	10 000	10 000
Sensitivity, nom.	mV/N	2	1
Resonant frequency	kHz	27	27
Frequency range with	Hz	6 600	6 900
steel impact tip (–10 dB)			
Time constant nom.	s	500	500
Rigidity	kN/µm	0,8	0,8
Temperature range operating	°C	-20 70	-20 70

Output

Voltage, full scale	V	±5	±5
Bias nom.	VDC	11	11
Impedance	Ω	<100	<100
Source			
Voltage	V	20 30	20 30
Constant current	mA	2 20	2 20

Hammer head dimensions

Diameter	mm	23	23
Length	mm	89	89
Weight	grams	250	250
Length of handle	mm	231	231
Connector	Туре	BNC neg.	BNC neg.

1 g = 9,80665 m/s², 1 lnch = 25,4 mm, 1 Gram = 0,03527 oz, 1 lbf-in = 0,113 N·m

Accessories Included	Туре	Ordering Key	
Plastic carrying case			Туре ТуреХ 📘
Impact tip wrench	1370	Measuring range	Ī
Impact tip, steel	9902A		
 Impact tip, steel with Delrin cap 	9904A	2000 N	2000
Impact tip, soft PVC	9906	5000 N	5000
 Impact tip, rubber hard (green) 	9908		
 Impact tip, rubber medium (red) 	9910		
 impact tip, rubber soft (gray) 	9912		
 Adapter for rubber impact tips 	9928		
 Extender mass (125 grams) 	9924		

Page 2/2

Kistler Instrument Corporation reserves the right to discontinue or change specifications, designs or materials without notice consistent with sound engineering principles and quality practices.

© 2009, Kistler Instrument Corporation, 75 John Glenn Dr., Amherst, NY 14228 Tel 716-691-5100, Fax 716-691-5226, sales.us@kistler.com, www.kistler.com