首页 公司简介 产品展台 开发生产 资料下载 技术支持 解决方案 展会消息
代理经销 集成电路 高频微波 消费电子 工控网络 安防报警 光纤光电 汽车电子
合作交流 留言本 友情连接 热卖产品 销售网络 招聘加盟 新品介绍 联系我们
传感器/变送器/仪表按厂商品牌选用指南按种类分类选用指南按行业应用选用指南 模块模组 隔离/采集/采集器/数据采集系统
产品资料 技术资料 样例工程 产品驱动 参考设计 应用电路 通讯协议 使用说明 支持软件 数据查询 问题解答 标准法规 图书资料 基础知识
     
 
机器人用传感器介绍
常用机器人用传感器及配件
 
 
     
  GE制药行业传感器
医疗用压力传感器
O2氧气传感器专场
CO2二氧化碳传感器专场
医疗监测
医用传感器
军 工传感器
 

传感与控制事业部欢迎您

依测量对象产品类型选购
依使用场合应用领域选购
依生产厂家厂名品牌选购
依测量原理检测方式选购
自动控制产品简介
热门传感器/特殊功能模块
常用传感器/开关/模块类
代理厂家品牌介绍
传感器自控产品目录
精品传感器图文介绍

传感器/变送器/开关/敏感元件

压力传感器变送器仪表总汇
精品压力传感器/压力变送器
热释电人体感应/菲涅尔透镜
温度开关/热保护器/热敏开关
PTC/NTC热敏电阻/压敏电阻
代理日本石冢SEMITEC
温度传感器/温度变送器
湿敏电阻/湿敏电容
湿度传感器/湿度变送器
温湿度传感器/温湿度变送器
微波传感器/微波移动探测器
火焰传感器/紫外/明火探测器
干簧管/干簧继电器/水银开关
代理OKI干簧管/传感器
继电器/半导体继电器/军用
防雷管/TVS管/保护器/开关
安防报警/消防设施传感器
消费电子传感器/家电传感器
红外传感器/光电传感器
霍尔元件/霍尔IC/霍尔传感器
气体传感器/气体变送器
汽车传感器/机动车用传感器
称重/测力/力传感器/仪器
旋转编码器/轴角传感器/角度
超声波传感器/换能器/雾化器
位移传感器/位移变送器
距离传感器/激光测距传感器
自复保险丝/温度保险/保险管
液位传感器/液位变送器
浸水传感器/浸水变送器
张力/重力/荷重/重量传感器
磁场传感器/磁敏传感器
雷达探测器/雷达模块
速度传感器/加速度传感器
压电传感器/压电加速度
转速传感器/转速计/转速表
振动传感器/震动传感器
指纹传感器/指纹模块/电路
风速传感器/风速变送器
粉尘传感器/灰尘传感器
雨滴传感器/雨量传感器
图像传感器/摄像头/摄像模块
露点传感器/结露传感器
电量传感器/电压/电流传感器
色标传感器/颜色传感器
激光传感器/镭射模阻
硅光电池/光敏电池/太阳能板
光敏电阻/光敏元器件
开关/光电开关/行程开关
压力开关/差压开关
流量传感器/流量变送器
光纤传感器/光栅传感器
集成传感器/智能传感器
PH值传感器/生物传感器
光幕传感器
接近开关/接近传感器
无线传感器/无线传感器网络
智能化传感器/传感器网络
倾斜传感器/倾角传感器
力矩传感器/转矩传感器
扭矩传感器/扭矩变送器
脉向传感器/脉搏传感器
血压传感器/胎压传感器
医用传感器/医疗传感器
螺传感器/陀螺仪
传感器IC/传感电路/配件
传感器软件/传感器系统
探测器 安全栅 电磁阀
其它敏感元器件/控制元件

环境监控产品

系列数据采集器
系列隔离变送模块
信号调理模块
系列GPRS无线传输I/0模块
以太网8路模拟量输入模块
系列监控仪
嵌入式系统
便携式工况记录仪
温湿度变送器
温度控制器
湿度控制器

数据采集系统

动力\环境\视频监控系统
GPRS数据采集系统
检验检测系统
专用监控系统

仪器仪表/校准仪表/报警器

温湿度测量显示控制仪表
红外测温仪/红外热像仪
称重控制仪表
流量积算仪表
多路仪表
可编程给定器
显示控制仪表
定时器\计时器
报警仪
无纸记录仪
系列PID控制器

物位传感器/变送器/开关

超声波物位变送器
射频物位开关
浮球液位变送器
浮球液位开关
投入式静压液位变送器
双界面油水分析仪
电容物位计
料位开关/音叉料位开关系列
智能磁致伸缩液位仪

嵌入式工控机/工控板/配件

嵌入式一体化工控机
全文工控组态软件

商运达其它部门产品介绍

电子元器件集成电路部

电子元器件产品介绍

电子元器件目录
日本冲电子OKI资料
日本精工SEIKO资料
MODEM数据通信芯片
军工产品事业部
军工产品详细介绍
军工产品选型目录

高频微波光纤光电部

射频微波光电产品网
高频微波光电产品目录
无线收发芯片和模组

专用电路和单片机部

消费类电子专用电路网
专用电路选型目录
专用电路捷选手册
专用电路详细资料

 工控事业部

中国工控安防科技网
工控安防产品介绍
电脑网络与系统集成部
仪器仪表与电源部
被动元件(无源元件)部
安防产品部
国际贸易部
汽车电子汽车用品
玩具礼品部
开发与生产部
 
 
   
  机器人用传感器
外部传感器 1.概述 为了检测作业对象及环境或机器人与它们的关系,在机器人上安装了触觉 传感器、视觉传感器、力觉传感器、接近觉传感器、超声波传感器和听觉传感器,大大改善了
欢迎访问autooo.net
外部传感器

1.概述

为了检测作业对象及环境或机器人与它们的关系,在机器人上安装了触觉

传感器、视觉传感器、力觉传感器、接近觉传感器、超声波传感器和听觉传感器,大大改善了机器人工作状况,使其能够更充分地完成复杂的工作。由于外部传感器为集多种学科于一身的产品,有些方面还在探索之中,随着外部传感器的进一步完善,机器人的功能越来越强大,将在许多领域为人类做出更大贡献。

2.外部传感器按功能分类

(1)触觉传感器 触觉是接触、冲击、压迫等机械刺激感觉的综合,触觉可以用来进行机器人抓取,利用触觉可进一步感知物体的形状、软硬等物理性质。对机器人触觉的研究,只能集中于扩展机器人能力所必需的触觉功能,一般把检测感知和外部直接接触而产生的接触觉、压力、触觉及接近觉的传感器称为机器人触觉传感器。

1)接触觉:接触觉是通过与对象物体彼此接触而产生的,所以最好使用手指表面高密度分布触觉传感器阵列,它柔软易于变形,可增大接触面积,并且有一定的强度,便于抓握。接触觉传感器可检测机器人是否接触目标或环境,用于寻找物体或感知碰撞。

① 机械式传感器:利用触点的接触断开获取信息,通常采用微动开关来识别(物体的二维轮廓,由于结构关系无法高密度列阵。

② 弹性式传感器:这类传感器都由弹性元件、导电触点和绝缘体构成。如采用导电性石墨化碳纤维、氨基甲酸乙酯泡沫、印制电路板和金属触点构成的传感器,碳纤维被压后与金属触点接触,开关导通。也可由弹性海绵、导电橡胶和金属触点构成,导电橡胶受压后,海绵变形,导电橡胶和金属触点接触,开关导通。也可由金属和铰青铜构成,被绝缘体覆盖的青铜箔片被压后与金属接触,触点闭合。

③ 光纤传感器:这种传感器包括由一束光纤构成的光缆和一个可变形的反射表面。光通过光纤束投射到可变形的反射材料上,反射光按相反方向通过光纤束返回。如果反射表面是平的,则通过每条光纤所返回的光的强度是相同的。如果反射表面因与物体接触受力而变形,则反射的光强度不同。用高速光扫描技术进行处理,即可得到反射表面的受力情况。

2)接近觉:接近觉是一种粗略的距离感觉,接近觉传感器的主要作用是在接触对象之前获得必要的信息,用来探测在一定距离范围内是否有物体接近、物体的接近距离和对象的表面形状及倾斜等状态,一般用“1”和“0”两种态表示。在机器人中,主要用于对物体的抓取和躲避。接近觉一般用非接触式测量元件,如霍尔效应传感器、电磁式接近开关和光学接近传感器。

以光学接近传感器为例,其结构如下图1所示。由发光二极管和光敏晶体管组成。发光二极管发出的光经过反射被光敏晶体管接收,接收到的光强和传感器与目标的距离有关,输出信号Uout是距离x的函数: Uout=f(x)。红外信号被调制成某一特定频率,可大大提高信噪比。

3)滑觉:机器人在抓取不知属性的物体时,其自身应能确定最佳握紧力的给定值。当握紧力不够时,要检测被握紧物体的滑动,利用该检测信号,在不损害物体的前提下,考虑最可靠的夹持方法,实现此功能的传感器称为滑觉传感器。

滑觉传感器有滚动式和球式,还有一种通过振动检测滑觉的传感器。物体在传感器表面上滑动时,和滚轮或环相接触,把滑动变成转动。

磁力式滑觉传感器中,滑动物体引起滚轮滚动,用磁铁和静止的磁头,或用光传感器进行检测,这种传感器只能检测到一个方向的滑动。球式传感器用球代替滚轮,可以检测各个方向的滑动,振动式滑觉传感器表面伸出的触针能和物体接触,物体滚动时,触针与物体接触而产生振动,这个振动由压点传感器或磁场线圈结构的微小位移计检测。滚轮式滑觉传感器如图2所示。

(2)力觉传感器 力觉是指对机器人的指、肢和关节等运动中所受力的感知,主要包括腕力觉、关节力觉和支座力觉等,根据被测对象的负载,可以把力传感器分为测力传感器(单轴力传感器)、力矩表(单轴力矩传感器)、手指传感器(检测机器人手指作用力的超小型单轴力传感器)和六轴力觉传感器。力觉传感器根据力的检测方式不同,可以分为:①检测应变或应力的应变片式;②利用压电效应的压电元件式;③用位移计测量负载产生的位移的差动变压器、电容位移计式,其中应变片被机器人广泛采用。
在选用力传感器时,首先要特别注意额定值,其次在机器人通常的力控制中,力的精度意义不大,重要的是分辨率。另外,在机器人上实际安装使用力觉传感器时,一定要事先检查操作区域,清除障碍物。这对实验者的人身安全、对保证机器人及外围设备不受损害有重要意义。

(3)距离传感器 距离传感器可用于机器人导航和回避障碍物,也可用于机器人空间内的物体进行定位及确定其一般形状特征。目前最常用的测距法有两种:

1)超声波测距法:超声波是频率20kHz以上的机械振动波,利用发射脉冲和接收脉冲的时间间隔推算出距离。超声波测距法的缺点是波束较宽,其分辨力受到严重的限制,因此,主要用于导航和回避障碍物。

2)激光测距法:激光测距法也可以利用回波法,或者利用激光测距仪,其工作原理如下:

氦氖激光器固定在基线上,在基线的一端由反射镜将激光点射向被测物体,反射镜固定在电动机轴上,电动机连续旋转,使激光点稳定地对被测目标扫描。由CCD(电荷耦合器件)摄像机接受反射光,采用图像处理的方法检测出激光点图像,并根据位置坐标及摄像机光学特点计算出激光反射角。利用三角测距原理即可算出反射点的位置。

(4)其他外部传感器 除以上介绍的机器人外部传感器外,还可根据机器人特殊用途安装听觉传感器,味觉传感器及电磁波传感器,而这些机器人主要用于科学研究、海洋资源探测或食品分析、救火等特殊用途。这些传感器多数属于开发阶段,有待于更进一步完善,以丰富机器人专用功能。

(5)传感器融合 系统中使用的传感器种类和数量越来越多,每种传感器都有一定的使用条件和感知范围,并且又能给出环境或对象的部分或整个侧面的信息,为了有效地利用这些传感器信息,需要采用某种形式对传感器信息进行综合、融合处理,不同类型信息的多种形式的处理系统就是传感器融合。传感器的融合技术涉及神经网络、知识工程、模糊理论等信息、检测、控制领域的新理论和新方法。

传感器汇集类型有多种,现举两种例子。

1)竞争性的:在传感器检测同一环境或同一物体的同一性质时,传感器提供的数据可能是一致的,也可能是矛盾的。若有矛盾,就需要系统裁决。裁决的方法有多种,如加权平均法、决策法等。在一个导航系统中,车辆位置的确定可以通过计算法定位系统(利用速度、方向等记录数据进行计算)或陆标(如交叉路口、人行道等参照物)观测确定。若陆标观测成功,则用陆标观测的结果,并对计算法的值进行修正,否则利用计算法所得的结果。

2)互补性的:传感器提供不同形式的数据。例如,识别三维物体的任务就说明这种类型的融合。利用彩色摄像机和激光测距仪确定一段阶梯道路,彩色摄像机提供图像(如颜色、特征),而激光测距仪提供距离信息,两者融合即可获得三维信息。

目前,要使多传感器信息融合体系化尚有困雄,而且缺乏理论依据。多传感器信息融合的理想目标应是人类的感觉、识别、控制体系,但由于对后者尚无一个明确的工程学的阐述,所以机器人传感器融合体系要具备什么样的功能尚是一个模糊的概念。相信随着机器人智能水平的提高,多传感器信息融合理论和技术将会逐步完善和系统化。
 

 

内部传感器
1.概述
在有关工业机器人功能的术语中,“内部”测量功能定义为测量机器人自身状态的功能,所谓内部传感器就是实现该功能的元件,具体检测的对象有关节的线位移、角位移等几何量,速度、角速度、加速度等运动量,还有倾斜角、方位角、振动等物理量,对各种传感器要求精度高、响应速度快、测量范围宽。内部传感器中,位置传感器和速度传感器,是当今机器人反馈控制中不可缺少的元件。现已有多种传感器大量生产,但倾斜角传感器、方位角传感器及振动传感器等用作机器人内部传感器的时间不长,其性能尚需进一步改进。
2.内部传感器按功能分类
(1)规定位置、规定角度的检测 检测预先规定的位置或角度,可以用ON/OFF两个状态值,这种方法用于检测机器人的起始原点、越限位置或确定位置。
l)微型开关:规定的位移或力作用到微型开关的可动部分(称为执行器)时,开关的电气触点断开或接通。限位开关通常装在盒里,以防外力的作用和水、油、尘埃的侵蚀。
2)光电开关:光电开关是由LED光源和光敏二极管或光敏晶体管等光敏元件组成,相隔一定距离而构成的透光式开关。当光由基准位置的遮光片通过光源和光敏元件的缝隙时,光射不到光敏元件上,而起到开关的作用。
(2)位置、角度测量 测量机器人关节线位移和角位移的传感器是机器人位置反馈控制中必不可少的元件。
1)电位器:电位器可作为直线位移和角位移检测元件,其结构形式如图1所示。




所以,为了保证电位器的线性输出,应保证等效负载电阻远远大于电位器总电阻。电位器式传感器结构简单,性能稳定,使用方便,但分辨率不高,且当电刷和电阻之间接触面磨损或有尘埃附着时会产生噪声。
2)旋转变压器:旋转变压器由铁心、两个定子线圈和两个转子线圈组成,是测量旋转角度的传感器。定子和转子由硅钢片和坡莫合金叠层制成,如图2所示。
在各定子线圈加上交流电压,转子线圈中由于交链磁通的变化产生感应电压。感应电压和励磁电压之间相关联的耦合系数随转子的转角而改变。因此,根据测得的输出电压,就可以知道转子转角的大小。可以认为,旋转变压器是由随转角θ而改变且耦合系数为Ksinθ或Kcosθ的两个变压器构成的。
定子上两个绕组的励磁电压为 Esl=Ecosωt,Es2=Esinωt
转子两个绕组输出电压为
Erl=K(Eslcosθ-Es2sinθ)=KEcos(ωt+θ)

Er2=K(Es2cosθ-Es2sinθ)=KEsin(ωt+θ)

可见,转子绕组输出电压幅值与励磁电压的幅值成正比,对励磁电压的相位移等于转子的转动角度θ,检测出相位θ,即可测出角位移。
3)编码器:编码器输出表示位移增量的编码器脉冲信号,并带有符号。根据检测原理,编码器可分为光学式、磁式、感应式和电容式。根据其刻度方法及信号输出形式,分为增量式编码器和绝对式编码器。作为机器人位移传感器,光电编码器应用最为广泛。




光电编码器的工作原理如图3所示,在圆盘上有规则地刻有透光和不透光的线条,在圆盘两侧,安放发光元件和光敏元件。当圆盘旋转时,光敏元件接收的光通量随透光线条同步变化,光敏元件输出波形经过整形后变为脉冲,码盘上有之相标志,每转一圈输出一个脉冲。此外,为判断旋转方向,码盘还可提供相位相差90º的两路脉冲信号,如图3所示。
绝对式编码器与增量式编码器不同之处在于圆盘上透光、不透光的线条图形,绝对编码器可有若干编码,根据读出码盘上的编码,检测绝对位置。编码的设计可采用二进制码、循环码、二进制补码等。
磁编码器在强磁性材料表面上记录等间隔的磁化刻度标尺,标尺旁边相对放置磁阻效应元件或霍尔元件,即能检测出磁通的变化。与光电编码器相比,磁编码器的刻度间隔大,但它具有耐油污、抗冲击等特点。人们期待着磁编码器和高分辨率的光电编码器能尽早地用作机器人的内传感器。
(3)速度、角速度测量 速度、角速度测量是驱动器反馈控制中必不可少的环节,有时也利用测位移传感器测量速度及检测单位采样时间位移量,然后用F/V转换器变成模拟电压,但这种方法有其局限性,在低速时,存在着不稳定的危险;而高速时,只能获得较低的测量精度。
最通用的速度、角速度传感器是测速发电机或成为转速表的传感器、比率发电机。恒定磁场中的线圈发生位移,线圈两端的感应电压E与线圈内交链磁通φ的变化率成正比,输出电压为 E=-dφ/dt
根据这个原理,测量角速度的测速发电机,可按其构造分为直流测速发电机、交流测速发电机和感应式交流测速发电机。
(4)加速度测量 随着机器人的高速比、高精度化,由机械运动部分刚性不足所引起的振动问题开始提到日程上来了。为了解决振动问题,有时在机器人的运动手臂等位置安装加速度传感器,测量振动加速度,并把它反馈到驱动器上。加速度传感器分为:
1)应变片加速度传感器:应变片加速度传感器是由一个板簧支承重锤所构成的振动系统。在板簧两面分别贴两个应变片,应变片受振动产生应变,其电阻值的变化通过电桥电路的输出电压被检测出来。
2)伺服加速度传感器:伺服加速度传感器中振动系统重锤位移变换成成正比的电流,把电流反馈到恒定磁场中的线圈,使重锤返回到原来的零位移状态。根据 F=ma=ki
这样,根据检测的电流入可以求出加速度。
3)压电感应加速度传感器:压电感应加速度传感器是利用具有压电效应的物质,将加速度转换为电压,即
U=Q/ACP=dijF/CP
a=UCP/dijFm
式中 CP——压电元件电容;
dij——压电常数;
U——电压;
m——质量。
(5)其他内部传感器除以上介绍的常用内部传感器外,还有一些根据机器人不同要求而安装的不同功能的内部传感器,如用于倾斜角测量的液体式倾斜角传感器、电解液式倾斜角传感器、垂直振子式倾斜角传感器、用于方位角测量的陀螺仪和地磁传感器。这些传感器有待于进一步完善,更好地用于机器人上。

 

机器人上用的传感器的介绍
感知系统是机器人能够实现自主化的必须部分。这一章,将介绍一下移动机器人中所采用的传感器以及如何从传感器系统中采集所需要的信号。

根据传感器的作用分,一般传感器分为:

内部传感器(体内传感器):主要测量机器人内部系统,比如温度,电机速度,电机载荷,电池电压等。

外部传感器(外界传感器):主要测量外界环境,比如距离测量,声音,光线。

根据传感器的运行方式,可以分为:

被动式传感器:传感器本身不发出能量,比如CCD,CMOS摄像头传感器,靠捕获外界光线来获得信息。

主动式传感器:传感器会发出探测信号。比如超声波,红外,激光。但是此类传感器的反射信号会受到很多物质的影响,从而影响准确的信号获得。同时,信号还狠容易受到干扰,比如相邻两个机器人都发出超声波,这些信号就会产生干扰。

传感器一般有以下几个指标:

动态范围:是指传感器能检测的范围。比如电流传感器能够测量1mA-20A的电流,那么这个传感器的测量范围就是10log(20/0.001)=43dB. 如果传感器的输入超出了传感器的测量范围,那么传感器就不会显示正确的测量值了。比如超声波传感器对近距离的物体无法测量。

分辨率:分辨率是指传感器能测量的最小差异。比如电流传感器,它的分辨率可能是5mA,也就是说小于5mA的电流差异,它没法检测出。当然越高分辨率的传感器价格就越贵。

线性度:这是一个非常重要的指标来衡量传感器输入和输出的关系。

频率:是指传感器的采样速度。比如一个超声波传感器的采样速度为20HZ,也就是说每秒钟能扫描20次。

下面介绍一下常用的传感器:

编码器:主要用于测量电机的旋转角度和速度。任何用电机的地方,都可以用编码器来作为传感器来获得电机的输出。

光电编码器的原理

电子罗盘:可以检测机器人与地球南北极之间的角度,从而获得机器人的朝向。但是精度很低。而且任何磁性物体都会造成罗盘失灵,比如扬声器。所以要配合其它传感器,比如编码器一起使用才能获得比较好的定位效果。主要有hall-effect和flux-gate两种:

Hall-Effect 原理的电子罗盘

 

Flux-gate 原理的电子罗盘

陀螺仪:又分机械陀螺仪和光电陀螺仪。可以检测绝对朝向。但是目前价格过高,只在飞机上采用。目前最好的光电陀螺仪能提供100KHz的采样频率,同时提供0.0001degress/hr的分辨率。但是价格也是同样昂贵。

GPS系统:这个相比不需要太多的解释。GPS系统分为标准GPS和差分GPS系统。标准GPS系统能提供15m的误差定位,而差分GPS系统能提供高达1m内误差的定位。如果再考虑相位差信号的话,最新的GPS设备能提供精确到10cm的定位坐标。怪不得美国人现在的导弹精确度如此之高。

差分GPS系统(DGPS)

 

超声波传感器:超声波传感器是基于TOF原理。首先发射一组声波脉冲信号,然后一个积分器就开始计算发射时间。一个返回信号阀值接着就会被设定来接受回波信号,这个阀值会随着时间的增加而减小,因为回波会随着距离的增加而发散,从而强度变小。但是在刚发射信号的时候,返回信号的阀值会被设定的很高以防止发射波直接触发接受器,但是这样造成一个问题,就是如果检测的距离很短,在阀值没有下降之前,返回信号已经到达接收器,这时,接收器会认为这个返回信号是刚发出的信号,从而拒绝接受。超声波传感器就会有一个探测盲区,没法这样对近距离物体探测。一般超声波探测器的频率为40Hz,探测范围为12c'm-5m,精度为98%-99.1%,分辨率为2cm。同时超声波是一个20-40度角的面探测,所以可以使用若干个超声波组成一个超声波阵列来获得180度甚至360的探测范围。 超声波还有其它几个缺点,比如交叉感应,扫描频率低,尤其是使用超声波阵列的时候,还有回波衰减,折射等问题。不过对于移动机器人来说,超声波还是目前最廉价和有效的传感器。

TOF(time of flight):TOF 原理就是 距离=速度×时间,比如声波传输速度是0.3m/ms,如果3m的距离,需要10ms才能到达。然后通过计算这个返回的时间差来确定距离。但是如果是光速的话,光速是0.3m/ns,同样3m的距离,光只要10ns就到了。这就对检测元件提出了非常高的要求。这也是激光传感器价格居高不下的原因。

TOF 原理

激光传感器:原理就是一个旋转得反射镜,将激光光束或者超声波按一定间隔反射出去,然后根据旋转得角度和时间差来得到不同角度得距离值。是用很典型得TOF原理。

不过对于激光传感器而言,有3种检测方式:
1)使用脉冲激光,按一定间隔发射激光,然后计算返回时间。这种方法和超声波一样,但是激光速度太快,所以对检测元件要求太高,一般LaserScanner不用这种方式。
2)使用不同频率得激光,按照一点顺序,发射不同频率得激光,通过检测返回光束得频率来得到距离。
3)相位差。多数激光传感器用得是这种方法。通过检测发射激光和反射激光得相位差来得到距离。
 

红外传感器:是利用三角测量法。

三角测量法(Triangulation-based):就是把发射器和接受器按照一定距离安装,然后与被探测的点形成一个三角形的三个顶点,由于发射器和接收器的距离已知,发射角度已知,反射角度也可以被检测到。因此检测点到发射器的距离就可以求出。假设发射角度是90度的情况,

D=f(L/x)

L=发射器和接收器的距离

x=接受波的偏移距离

f()是函数。

由此可见,D是由1/x决定的,所以用这个测量法可以测得距离非常近的物体,目前最精确可以到1um的分辨率。但是由于D同时也是L的函数,要增加测量距离就必须增大L值。所以不能探测远距离物体。

但是如果将红外传感器和超声波传感器同时应用于机器人,就能提供全范围的探测范围了,超声波传感器的盲区正好可以由红外传感器来弥补。

多普勒效应传感器:主要用于探测移动物体的速度。目前战斗机上用的雷达就是基于这个原理的。主要用于躲避快速移动障埃物。

 

多普勒原理(Doppler):假设发射器以频率ft发射波,接收器以频率fr接受波,发射器和接收器之间的相对速度为v。

如果发射器在移动,则

fr=ft/(1+v/c)

如果接收器在移动,则

fr=ft(1+v/c)

通过计算多普勒频移来得到相对速度v。

f=ft-fr=2*ft*v*cosA/c

f=多普勒频移

A=发射波和运动角度差

静止状态

 

物体趋近

 

物体远离

目前还没有适合小型移动机器人的相关传感器出现。

视觉传感器:摄像头都是属于视觉传感器,目前200元一个的网络摄像头也都可以用作机器人的视觉传感器。

 

 

更多产品请看本公司产品专用销售网站:欢迎索取免费详细资料、设计指南和光盘 ;产品凡多,未能尽录,欢迎来电查询。

商运达中国传感器科技信息网:http://www.sensor-ic.com/商运达工控安防网:http://www.pc-ps.net/

商运达电子 元器件网:http://www.sunstare.com/商运达微波光电产品网:HTTP://www.rfoe.net/

商运达消费电子产品网://www.icasic.com/商运达实业科技产品网://www.sunstars.cn/

传感器销售热线:

    地址:深圳市福田区福华路福庆街鸿图大厦9732室

    电话:0755-83376489 83376549 83607652 83370250   83370251  

    传真:0755-83376182  (0)13902971329  MSN: SUNS8888@hotmail.com

    邮编:518033   E-mail:szss20@163.com     QQ: 195847376

    深圳赛格展销部:深圳华强北路赛格电子市场9583号 电话:0755-83665529   13823648918 FAX:0755-83376182

    技术支持: 0755-83394033 13501568376

    北京分公司:北京海淀区知春路132号中发电子大厦3097               TEL4006579498  18927445855  13823791822  FAX010-62543996 

    上海分公司:上海市北京东路668号上海賽格电子市场地下一层D25号                TEL4006571586  56703037  13823676822  FAX021-56703037

    西安分公司:西安高新开发区20(中国电子科技集团导航技术研究所           西安劳动南路88号电子商城二楼D23 

            TEL4006572198  13072977981  FAX:029-77678271