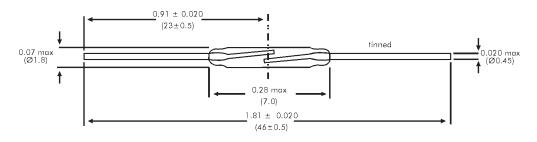

Sensor---RI-70 Series

RI-70 Series


Ultra-miniature dry-reed switch hermetically sealed in a gas-filled glass envelope. Single-pole, single-throw (SPST) type, having normally open contacts, and containing two magnetically actuated reeds.

The switch is of the double-ended type and may be actuated by an electromagnet, a permanent magnet or a combination of both.

The device is intended for use in relays, sensors, pulse counters or similar devices.

RI-70Series Features

- •Ideal for ATE switching
- •7 mm glass length
- •Contact layers: gold, sputtered ruthenium
- Superior glass-to-metal seal and blade alignment
- •Excellent life expectancy and reliability

Dimensions in inches (mm)

General data for all models RI-70

AT-Customization/Preformed Leads

Besides the standard models, customized products can also be supplied offering the following options:

- •Operate and release ranges to customer specification
- •Cropped and/or preformed leads

Coils

All characteristics are measured using the Philips Standard Coil. For definitions of the Philips Standard Coil, see *Reed Switch Technical & Application Information* Section of this catalog.

Life expectancy and reliability

The life expectancy data given below are valid for a coil energized at 1.25 times the published maximum operate value for each type in the RI-70 series.

No-load conditions (operating frequency: 100 Hz) Life expectancy: min. 10^9 operations with a failure rate of less than 2×10^{-10} with a confidence level of 90%. End of life criteria:

•Contact resistance $> 1\Omega$ after 2 ms

•Release time > 2ms (latching or contact sticking).

Loaded conditions (resistive load: 5 V; 100 mA; operating frequency: 125 Hz)

Life expectancy: min. 2×10^7 operations with a failure rate of less than 10^8 with a confidence level of 90%. End of life criteria:

- •Contact resistance $> 1\Omega$ after 2.5 ms
- •Release time > 1 ms (latching or contact sticking).

Loaded conditions (resistive load: 20 V; 500 mA; operating frequency: 125 Hz)

Life expectancy: min 5 x 106 e

Life expectancy: min. 5×10^6 operations with a failure rate of $< 0.5 \times 10^7$ with a confidence level of 90%.

End of life criteria:

- •Contact resistance $> 2\Omega$ after 2.5 ms
- •Release time > 2.5 ms (latching or contact sticking). Switching different loads involves different life expect- ancy and reliability data. Further information is avail- able on request.

Sensor---RI-70 Series

Model Number			RI-70
Parameters	Test Conditi	ons Units	
Operating Characteristics			
Operate Rangs		AT	7-21
Release Range		AT	3-16
Operate Time-including bounce (typ.)	(energization)	ms	0.15(25AT)
Bounce Time (typ)	(energization)	ms	0.035(25AT)
Release Time (mas)	(energization)	us	0.035(25AT)
Resonant Frequency (typ.)		Hz	17900
Electrical Characteristics			
Switch Power (max)		W	10
Switch Voltage DC (max)		V	170
Switch Voltage AC, RMS value (max)		V	120
Switch Current DC (max)		mA	500
Switch Current AC, RMS value (max)		mA	500
Carry Current DC (max)		A	400
Breakdown Voltage (min)		V	210
Contact Resistance (initial max)	(energization)	mΩ	150(20AT)
Contact Resistance (intial typ.)	(energization)	mΩ	120(20AT)
Contact Capacitance (max)	without test coil	pF	0.35
Insulation Resistance (min)	RH≤45%	$ ext{M}\Omega$	10^{6}

Mechanical Data

Model Number

Contact arrangement is normally open; lead finish is tinned; net mass is approximately 70 mg; and can be mounted in any position.

Shock

The switches are tested in accordance with "IEC 68-2-27", test Ea (peak acceleration 100 G, half sinewave; duration 11 ms). Such a shock will not cause an open switch (no magnetic field present) to close.

Vibration

The switches are tested in accordance with "IEC 68-2-26", test Fc (acceleration 10G; below cross-over fre-quency 57 to 62 Hz; amplitude 0.75 mm; frequency range 10 to 2000 Hz; duration 90 minutes.) Such a vibration will not cause an open switch (no magnetic field present) to close, nor a switch kept closed by an 80 AT coil to open.

Mechanical Strength

The robustness of the terminations is tested in accordance with "IEC 68-2-21", test Ua₁ (load 10 N).

Operating and Storage Temperature

Operating ambient temperature; min: -55°C;

max: +125°C. Storage temperature; min: -55°C; max:

+125°C. Note: Temperature excursions up to 150°C may be permissible. For more information contact your nearest Coto Technology sales office.

DI 70

Soldering

The switch can withstand soldering heat in accordance with "IEC 68-2-20", test Tb, method 1B: solder bath at 350 ± 10 °C for 3.5 ± 0.5 s. Solderability is tested in accordance with "IEC 68-2-20" testTa, method 3: solder globule temperature 235°C; ageing 1b: 4 hours steam.

Welding

The leads can be welded.

Mounting

The leads should not be bent closer than 1 mm to the glass-to-metal seals. Stress on the seals should be avoided. Care must be taken to prevent stray magnetic fields from influencing the operating and measuring conditions.